We have allowed you to comment and suggest on the Google Docs (ping us on the
message board if you can't) if you would like to provide any feedback (anything small or
big such as a typo, grammar mistake, suggested change, etc. is welcome).

CSE 332: Data Structures and Parallelism

Debugging in CSE 332

Although debugging is not strictly a topic in CSE 332, the programs you will be writing
are large enough that efficient debugging will be essential. We realize that many of you
have never debugged programs as large (or complicated) as the data structures you will
be building, so we’re hoping this handout will lead you down the right path.

Debugging “Non-Strategies”

This section describes strategies that you should absolutely avoid when debugging.
They lead to extra frustration, often don’t help you find the bug, and won’t work at all as
the programs get larger and more complicated.

Stare and Hope

When you have a complex program . . . spread out over multiple files . . . with some
code that you didn’t write, it's impossible to keep it all in your head. A common attempt
at debugging is to stare at the code and wait for the bug to “pop” out at you. In CSE 143
level programs, this often works, but it's not a good approach from now on. The intuition
on why this doesn’t work well is that you're not looking at the states the program gets
in—computers are better at being computers than we are. So, you should always be
running your program to debug.

“Shotgun” Debugging

A “slightly more advanced” strategy is to make a change that “feels right”, then run the
program to see if it worked. Then, make a change, then run the program, etc. Although
this time you’re running the program, the major concern with this strategy is that every
time you make a change, you’re not learning anything about where or why the program
went wrong. Every time you run the program, you should be ruling out some potential
reason the program is broken.



Debugging Tools

While the approach you take to debugging is the most important thing, the tool you use
can also make-or-break your debugging session. We recommend you try both and use
whichever one makes more sense in the situation.

println

One way of examining state is to . . . print out the state. One “gotcha” with our testing
framework is that you have to use System.err.println (rather than
System.out.println). Whenever you print out state while debugging, you should
“‘mark” it with some string; this way, you know where/when in the program the output is
from. A really common way of debugging with print1ns is to surround the potential
problem area with a “begin” and an “end” and attempt to narrow down the area that the
bug occurs in (more on this later in the handout).

IDE Debugger

Probably the best way to debug state is to use the built-in debugger in whatever IDE
you have. If you're going to do this, please make sure to read the tutorial before using it.
Make sure you understand the difference between “stepping over” and “stepping in”.
The debugger can be used in much the same way as the print1n statements, but the
approach is different. Instead of surrounding the area that might be broken, you step
through until you hit the place it is broken. Unfortunately, you will often have to step
through the program multiple times even after you’ve found the error. The reason for
this is that you’ll need to step more carefully to figure out exactly where things went
wrong.

To help with visualizing the state of your data structures, | would heavily recommend
installing plugins such as the jGrasp plugin (as of writing, this plugin is a bit buggy so
the fallback will be the Java Visualizer plugin). Instructions are linked.



https://www.jetbrains.com/help/idea/managing-plugins.html
https://plugins.jetbrains.com/plugin/12769-jgrasp
https://plugins.jetbrains.com/plugin/11512-java-visualizer

Debugging Strategies

There are a wide variety of approaches to debugging, and you should learn any and all
of them. You'll likely end up having a “favorite” approach, but we recommend varying
the approach based on the type of bug you’ve run into.

Tell A Story

A bug is nothing more than a divergence between your expectations (the “story” of what
your program is supposed to do) and reality. Debugging is reconciling the exact place
that the stories diverge. If you can find the place where they diverge, then you can
understand what went wrong by examining state right before and after the divergence.

To find the moment of divergence, you should attempt to narrow down the possible
scope of the bug. To put it another way, before you start debugging, the error could be
anywhere from the first line of main to the last line of the program. You can usually very
quickly narrow down the scope to a much more reasonable piece of the program. The
hard part is narrowing it enough to see exactly where the bug is.

For this, we recommend doing (effectively) a binary search. That is, see if “around the
middle of the program” shows the buggy behavior: if it does, then search later; if not,
then you can move the end of your scope to the middle. Then, you keep on narrowing
until you’ve found exactly where the bug is.

Run An “Experiment”

Debugging can be treated like a scientific experiment. That is, before running the
program, you should make a hypothesis as to what the bug is. Then, design a way to
confirm or deny your hypothesis. Finally, run your program and actually confirm or deny
your idea. If you weren’t right, then come up with a new hypothesis. The important idea
here is that you should never edit your program without some sort of idea of where or
what the actual bug is.

Fail Fast

Some of the most difficult bugs happen because there is an error early in the program
that doesn’t show up until significantly later in the program. For example, if you insert
lots of things into a data structure, you don’t actually notice any errors until you do a



find. Debugging is significantly easier if you make your programs “fail fast”. All this
entails checking that all the invariants are met at the beginning and the end of every
method. In other words, you should write a private method that “checks” the internal

structure and if it ever returns false, throw an exception and end your program.

Take A Break

If you’ve been debugging for a while and you’re stuck, stop debugging. Take a break.
Do something else. Anything else. The more frustrated you are, the less productive and
efficient you will be.

Ask For Help

If you have a particularly thorny bug, you've tried all of the above, and you have no idea
what’s going on, come talk to us! We will help! We can walk you through debugging
strategies. (We won'’t do it for you, but we’ll do it with you if you’ve made an attempt.)



Common FAQ

The following items are issues you might run into during any (or all!) of the projects in
CSE 332.

The IDE Debugger doesn’t work with the provided tests

This happens because the testing framework does some fancy things to make sure
different tests don’t interfere with each other. If you want to use the debugger, copy the
actual content of the tests to your own testing file and use that main instead.

sys.out.println will also not work but you can use sys.err.println to print to
console.

| keep on getting a ClassCastException

If the error is something like

java.lang.ClassCastException: [Ljava.lang.Object; cannot be cast to

[Ljava.lang.Comparable,

this means that when you are creating an array (probably the one backing your data
structure), you are using the wrong type. Take a look at the generics handout, and make
sure that you’re following it exactly.

I’m updating the size/root/etc., but it’s not changing

It’s likely that you're “shadowing” a variable. The super classes you’re given have fields
for size, root, etc. If you create your own in the subclasses, then your data structure
has two conflicting roots. Make sure to use the one in the super class instead.

The tests are failing, but I’m pretty sure my data structures
are working!

Make sure you’re updating the s1i ze for your data structure. Also, make sure you're
throwing the right exceptions based on what the super class says to do.



Zip or uMessage performs poorly or you are getting a
java.lang.OutOfMemoryError

Visit this link for the solution, Increase Memory Heap. When you use the new keyword
in Java, you are allocating memory on the heap. (Take CSE 351 for more information

about memory allocation.) The above error occurs when your program allocates more
memory than given by IntelliJ.

testRepeatedWordsPerNGram is failing, but 3 ==
You're likely creating a “new Integer”, but you should be using the one you were given.

Cannot instantiate the type
Dictionary<AlphabeticString, Integer>

Dictionary is an abstract class. So, you can’t make a new one (which type of dictionary
would it be?). You should use newlnner and newOuter as if they were constructors for
dictionaries. If you carefully read the spec, it explains exactly how to do this.

NullPointerException in MoveToFrontList

Make sure you're using .equals instead of ==

NullPointerException in NGramToNextChoicesMap

Make sure that your HashTrieMap is updating its size field correctly when changing
the value of items that already exist in the HashTrieMap.

The Iterator for BST (or AVLTree) seems broken

Your worklists should be capable of storing nulls.

The type E is not a valid substitute for the bounded

parameter <E extends Comparable<E>> of the type
MinFourHeap<E>

You forgot to remove the “extends Comparable<E>" from the top of your

MinFourHeap.


https://www.jetbrains.com/help/idea/increasing-memory-heap.html

My ChainingHashTable puts identical items in the
dictionary multiple times

Remember that hash tables rely on the equals method; you should make sure you’re
comparing the keys, not the items. Also, make sure you're using .equals and not ==

uMessage gives a NullPointerException when | type
really fast and it tries to autocorrect

Don’t worry about this; it's not your fault.



